Etude de la transition magnétostructurale de Ba(Fe_{1x} Co_x)₂As₂

par spectroscopie Raman

Ludivine Chauvière¹, Yann Gallais¹, Alain Sacuto¹, Maximilien Cazayous¹, Marie-Aude Méasson¹, Dorothée Colson², Anne Forget²

¹ Laboratoire Matériaux et Phénomènes Quantiques, CNRS, Université Paris Diderot (Paris, France) ² Service de Physique de l'Etat Condensé, DSM/DRECAM/SPEC, CEA Saclay (Gif-sur-Yvette, France)

dépasser les frontières

M P Q

1) Présentation des pnictides :

- Définition et exemples
- Structure du Ba(Fe_{1x} Co_x)₂As₂

- Diagramme de phase du Ba(Fe_{1x} Co_x)₂As₂

2) Spectroscopie Raman :

- Principe et dispositif expérimental
- Spectre typique du Ba(Fe_{1x} Co_x)₂As₂

3) Résultats expérimentaux :

- Dédoublement du phonon E_g à la transition magnétostructurale
- Dépendance en température et en dopage
- Couplage fort spin-phonon

1) Présentation des pnictides:

Composés supraconducteurs :

- haute T_c
- couches Fer Arsenic
- ordre magnétique à dopage nul
- ordre supraconducteur en dopant

Exemples :

famille 1111	famille 122	autres familles

LnOMtPn

$\frac{1}{Ba(Fe_{1x} Co_{x})_{2}As_{2} (T_{c}=24 K)}$			
$Ca_{1x} Nd_{x} FeAsF (T_{c}=56 \text{ K}) = FeSe_{1x} Te_{x} (T_{c}=15 \text{ K}) Ca_{1x} Na_{x} Fe_{2}As_{2} (T_{c}=26 \text{ K})$ $CaFe_{1x} Co_{x}AsF (T_{c}=22 \text{ K}) = Ser_{1x} SF_{(T_{c}=56 \text{ K})} Tb_{1x} Ca_{x} OFeAs_{(T_{c}=26 \text{ K})}$ $CaFe_{1x} Co_{x}AsF (T_{c}=22 \text{ K}) = Ser_{1x} SF_{(T_{c}=56 \text{ K})} Tb_{1x} Ca_{x} OFeAs_{(T_{c}=26 \text{ K})}$ $= GdFeAsO_{1-\delta} (T_{c}=53,5 \text{ K}) = ur en d NdO_{1x} F_{x} FeAs_{(T_{c}=52 \text{ K})}$ $CeO_{1x} F_{x} FeAs_{(T_{c}=41 \text{ K})} = SmO_{1x} F_{x} FeAs_{(T_{c}=43 \text{ K})}$			
famille 1111	famille 122	autres familles	
LaOFeP $(T_c=4 \text{ K})$ LaO _{1+x} F_x FeAs $(T_c=26 \text{ K})$ SmFeAsO _{1-δ} $(T_c=53,5 \text{ K})$ Gd _{1+x} Th _x FeAsO $(T_c=56 \text{ K})$ Pr _{1+x} Sr _x FeAsO $(T_c=16 \text{ K})$	$CsFe_{2}As_{2} (T_{c}=2,6 \text{ K})$ $Ba_{1x} K_{x}Fe_{2}As_{2} (T_{c}=38 \text{ K})$ $Sr_{1x} Cs_{x}Fe_{2}As_{2} (T_{c}=37 \text{ K})$ $Ba(Fe_{1x} Co_{x})_{2}As_{2} (T_{c}=24 \text{ K})$	$Li_{1x} FeAs (T_c=18 \text{ K})$ $FeSe_{1x} (T_c=13,5 \text{ K})$ $Ca_{1x} Pr_x FeAsF (T_c=52 \text{ K})$ $Sr_4V_2O_6Fe_2As_2 (T_c=37 \text{ K})$ $Sr_3Sc_2O_5Fe_2As_2 (T_c=?)$	

1) Présentation des pnictides:

Structure

tétragonale (a=b) non magnétique haute T

orthorhombique (a≠b) onde de densité de spin

2) Spectroscopie Raman :

Diffusion inélastique de la lumière

suivant la polarisation incidente, on excite différents modes de vibration

Dépendance en température du composé non dopé BaFe₂As₂

Fréquence et largeur des phonons pour le B₁(Fe) dans BaFe₂As₂

Ouverture gap dû à la formation de l'onde de densité de spin

Dépendance en température pour différents dopages (zoom sur le phonon E_g)

Large dédoublement du phonon $E_q \iff$ Transition structurale

0.05

Х

0.10

Fréquence et largeur des phonons pour le $E_g(Fe, As)$ dans $Ba(Fe_1, Co_x)_2As_2$

Amplitude du dédoublement du $E_g(Fe, As)$ avec le dopage

Dédoublement du phonon E_g(Fe, As) en température en dopage

<u>Paramètre d'ordre</u> (β =0.125)

 $\frac{\Delta\omega(T)}{\Delta\omega(T=0)} = \left(1 - \frac{T}{T_s}\right)^{\beta}$

<u>Comparaison avec moment</u> <u>magnétique</u>

 $(1 \text{ meV} \leftrightarrow 8 \text{ cm}^{-1} \leftrightarrow 12 \text{ K})$

P. Richard & al, Phys. Rev. Lett. 102, 047003 (2009)

Conclusions

Spectroscopie Raman du composé Ba(Fe_{1x} Co_x)₂As₂

- À la transition structurale
- \leq Large dédoublement du phonon E_g(Fe, As) qui \sum avec le dopage
- \triangleleft Anomalie du phonon A_{1g} (As)
- S Anomalie dans la largeur du phonon B_{1q} (Fe)

Couplage fort spin-phonon – Vers un régime intermédiaire du magnétisme

Perspectives